Exercise 3

Use power series to solve the differential equation.

$$
y^{\prime}=x^{2} y
$$

Solution

$x=0$ is an ordinary point, so the ODE has a power series solution centered here.

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Differentiate the series with respect to x.

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substitute these formulas into the ODE.

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=x^{2} \sum_{n=0}^{\infty} a_{n} x^{n}
$$

Bring x inside the summand.

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty} a_{n} x^{n+2}
$$

Make the substitution $n=k+3$ in the series on the left and the substitution $n=k$ in the series on the right.

$$
\sum_{k+3=1}^{\infty}(k+3) a_{k+3} x^{(k+3)-1}=\sum_{k=0}^{\infty} a_{k} x^{k+2}
$$

Simplify the sum on the left.

$$
\sum_{k=-2}^{\infty}(k+3) a_{k+3} x^{k+2}=\sum_{k=0}^{\infty} a_{k} x^{k+2}
$$

Write out the first two terms on the left.

$$
(-2+3) a_{-2+3} x^{-2+2}+(-1+3) a_{-1+3} x^{-1+2}+\sum_{k=0}^{\infty}(k+3) a_{k+3} x^{k+2}=\sum_{k=0}^{\infty} a_{k} x^{k+2}
$$

Combine the series on the left side.

$$
a_{1}+2 a_{2} x+\sum_{k=0}^{\infty}\left[(k+3) a_{k+3}-a_{k}\right] x^{k+2}=0
$$

In order for the left side to be zero, a_{1} and a_{2} and the quantity in square brackets must be zero.

$$
(k+3) a_{k+3}-a_{k}=0
$$

Solve for a_{k+3}.

$$
a_{k+3}=\frac{1}{k+3} a_{k} \quad a_{1}=0 \quad a_{2}=0
$$

In order to determine a_{k}, plug in values for k and try to find a pattern.

$$
\begin{aligned}
k=0: & a_{3}=\frac{1}{0+3} a_{0}=\frac{1}{3} a_{0} \\
k=1: & a_{4}=\frac{1}{1+3} a_{1}=0 \\
k=2: & a_{5}=\frac{1}{2+3} a_{2}=0 \\
k=3: & a_{6}=\frac{1}{3+3} a_{3}=\frac{1}{6}\left(\frac{1}{3} a_{0}\right)=\frac{1 \cdot 1}{6 \cdot 3} a_{0} \\
k=4: & a_{7}=\frac{1}{4+3} a_{4}=0 \\
k=5: & a_{8}=\frac{1}{5+3} a_{5}=0 \\
k=6: & a_{9}=\frac{1}{6+3} a_{6}=\frac{1}{9}\left(\frac{1 \cdot 1}{6 \cdot 3} a_{0}\right)=\frac{1 \cdot 1 \cdot 1}{9 \cdot 6 \cdot 3} a_{0}
\end{aligned}
$$

The general formulas are

$$
\begin{aligned}
a_{3 m} & =\frac{1}{(3 m)!!!} a_{0}=\frac{1}{3^{m} m!} a_{0} \\
a_{3 m+1} & =0 \\
a_{3 m+2} & =0 .
\end{aligned}
$$

Therefore, the general solution is

$$
\begin{aligned}
y(x) & =\sum_{m=0}^{\infty} a_{m} x^{m} \\
& =\sum_{m=0}^{\infty} a_{3 m} x^{3 m}+\sum_{m=0}^{\infty} a_{3 m+1} x^{3 m+1}+\sum_{m=0}^{\infty} a_{3 m+2} x^{3 m+2} \\
& =\sum_{m=0}^{\infty} \frac{1}{3^{m} m!} a_{0} x^{3 m}+\sum_{m=0}^{\infty}(0) x^{3 m+1}+\sum_{m=0}^{\infty}(0) x^{3 m+2} \\
& =a_{0} \sum_{m=0}^{\infty} \frac{x^{3 m}}{3^{m} m!} \\
& =a_{0} \sum_{m=0}^{\infty} \frac{\left(\frac{x^{3}}{3}\right)^{m}}{m!}=a_{0} e^{x^{3} / 3},
\end{aligned}
$$

where a_{0} is an arbitrary constant.

